THE INTRAMOLECULAR DIELS-ALDER CYCLOADDITION OF N-DIENOYL ACRYLIMIDATES. NEW METHODOLOGY FOR THE CONSTRUCTION OF NITROGEN HETEROCYCLES.

> K.J. Shea* and J.J. Svoboda Department of Chemistry University of California Irvine, California 92717

<u>Summary</u>: N-(3,5-Hexadienoyl)-acrylimidates, which have been synthesized by acylation of 2-ethoxy-l-aza-1,3-butadienes with 3,5-hexadienoyl chloride, are found to undergo facile intramolecular Diels-Alder cycloadditions to afford predominately <u>cis</u>-hexahydroisoquinolines in good yields.

Incorporation of nitrogen into the dienophile or diene component of the Diels-Alder reaction constitutes an important synthetic route to variously substituted nitrogen heterocycles for alkaloid synthesis.¹ The intramolecular [4+2] reaction of azatrienes containing N-enoyl-1-aza-1,3-butadiene² or N-dienoyl imine³ functionality has led to indolizidine and quinolizidine alkaloid precursors. A variant of the intramolecular approach, utilizing nitrogen in the tether joining the diene and dienophile, has also been applied to the synthesis of a number of functionalized hydroindole, hydroisoindole, hydro-quinoline and hydroisoquinoline derivatives.⁴ The latter approaches have mainly relied on the amide,⁵ amine,⁴ or enamide⁶ functionality to serve as the link between the diene and dienophile components.⁷ In contrast, the use of the imidate group as the means of introducing nitrogen into fused ring systems by the intramolecular Diels-Alder reaction has not been investigated.

In this communiction we report the facile intramolecular cycloaddition of N-(3,5-hexadienoyl)-acrylimidates, 3a-3d, which affords predominantly <u>cis</u>-hexa-hydroisoquinolones <u>4a-4d</u> in good yields. The Diels-Alder precursors are readily assembled from acrylamides and the overall transformation results in a short convergent entry into nitrogen heterocycles.

Our strategy for the construction of the Diels-Alder precursor is based upon the acylation of alkyl or aryl imidates (eq. 1), a reaction known to provide N-acyl alkyl or aryl imidates in high yield.⁹ Several methods were explored for the synthesis of acryl imidates. Triethyloxonium tetrafluoroborate alkylation¹⁰ of primary acrylamides <u>la-ld</u> followed by deprotonation of the resulting acrylimidate tetrafluoroborates with aqueous base proved to be the most expedient route, providing compounds <u>2a-2d</u> in moderate yield (eq. 2, Table 1). The reaction of acrylimidate <u>2a</u> with 3,5-hexadienoyl chloride⁶

(0.95 eq) in the presence of triethyl amine (1.05 eq, C_6H_6 , RT), resulted in generation of N-acyl intermediate <u>3a</u>. Interestingly, NMR revealed the formation of cycloaddition products ($\underline{4}$) even under the mild conditions of the acylation (rt). Heating the solution for 1 h at reflux completed formation of the cycloadduct $\underline{4}$, an N-acyl imidate, as an 8:1 mixture of stereoisomers in 80% yield. Stereochemistry of the major isomer 4c was established by conversion to the known <u>cis</u>-decahydroisoquinoline¹¹ by hydrolysis to the imide (1% HCl, MeOH/H2O, RT), followed by reduction of the double bond (H2, PtO2, EtOH, RT) and imide group (LAH, THF). Analysis of the proton coupling in adducts 4a-d were also consistent with this assignment. Proton H_a splits the methylene protons of the major adduct $(H_{\rm b}, H_{\rm c})$ into two doublets of doublets (2.42, dd, J=5.2, 15.6 Hz; 2.16, dd, J=8.9, 15.6 Hz). The preponderance of cis-cycloadduct <u>4a</u> implies the favored endo transition state for the cycloaddition (Scheme 1). Related systems are summarized in Table II. In all cases the cis-cycloadduct (endo) is favored.

The cyclic acyl imidates $\underline{4}$ represent chemodifferentiated imides that are readily reduced with sodium borohydride to ethoxyamides ($\underline{5}$, eq. 3), important intermediates for subsequent annulations.¹²

(a)
$$\sum_{CI} Et_3N, \varphi H, r.t.$$

The assembly of Diels-Alder precursors from readily available acrylamides, the mild reaction conditions and high chemical yield for the cycloadditions, and the synthetic flexibility of the acyl imidate cycloadducts make this a potentially important addition to heterocyclic synthesis.

<u>Acknowledgement</u>: Financial support from the National Institutes of Health is gratefully acknowledged.

Entry		Acrylamide ^R l ^R 2		Alkylation Conditions ^{a,b} (eq. Et ₃ OBF ₄ ; time, h)	Imidate	Isolated Yield (%)	bp ^C (°C, mm)	
1	<u>la</u>	н	н	1.1; 12	<u>2a</u>	48	70-73; 121	
2	<u>1b</u>	н	CH ₃	1.2; 3	<u>2b</u>	39	74-76; 100	
3	lc	СН3	н	1.3; 15	<u>2c</u>	44	110-120; 100	
4	<u>1d</u>	φ	н	1.0; 0.25	<u>2d</u>	59	114-115; 1	

Table	I.	Preparation	of	Acrylimidates	2a-2d.
TUDIC	.	reparacton	01	- ACLATHUT AGE CS	

a) All alkylations were run in CH_2Cl_2 at r.t. under N_2 ; b) The acrylimidate tetrafluoroborate salt was treated with 12% aq. NaOH at 0 C in entries 1, 2, 3 and satd. aq. KHCO₃ solution at r.t. in entry 4, to liberate the imidates 2a-2d; c) Temperatures in entry 3 refers to the temperature of the air bath in a Kugelrohr distillation.

Entry	N-Acyl Acrylimidate	Diels-Alder Conditions (time; solvent; temp. C)	Isolated Yield (१)	Isomer Distribution ^a <u>4c</u> : <u>4t</u>
1	<u>3a</u>	l h; benzene; 80	78-82	8:1
2	<u>3b</u>	12 h; benzene; 80	80-83	5.5 : 1
3	<u>3c</u>	9 h; toluene; 110	72-83 ^b	3.5:1
4	<u>3d</u>	12 h; toluene; 110	78	4:1

Table II. Intramolecular Diels-Alder Cycloaddition of N-Acyl Acrylimidates 3a-3d.

a) Isomer distributions determined by VPC or PMR; b) A yield of 83% was obtained by a Kugelrohr distillation (130-135°C/0.015 mm) of the crude isomer mixture. A lower yield was obtained when the mixture was purified by flash chromatography (SiO2, 1:1 hexanes/ethyl acetate).

References and Footnotes

- (a) Boger, D.L., <u>Tetrahedron</u>, <u>1983</u>, 39, 2869; (b) Desimoni, G., and Tacconi, G., <u>Chem. Rev.</u> <u>1975</u>, 75, 651; (c) Weinreb, S.M., and Staib, R.R., <u>Tetrahedron</u>, <u>1982</u>, 39, 3087; (d) Weinreb, S.M., Levin, J.J., <u>Heterocycles</u>, <u>1979</u>, 12, 949. 1.
- (a) Cheng, Y.-S., Fowler, F.W., Lupo, Jr., A.T. <u>J. Am. Chem. Soc.</u> 1981, 103, 2090; (b) Cheng, Y.-S., Fowler, F.W. <u>J. Am. Chem. Soc.</u> 1983, 105, 2. 7696.
- 3.
- Weinreb, S.M. Acc. Chem. Res., 1985, 18, 16. (a) Ciganek, E. Org. Rect. 1984, 32, 1; (b) Fallis, A.G. Can. J. Chem., 4. 1984, 2, 183; (c) Oppolzer, W. Angew. Chem. Int. Ed. Engl. 1977, 16, 10. (a) Martin. S.F., Williamson, S.A. Gist, R.P.; Smith, K.M. J. Org. Chem.
- 5. 1983, 48, 5170; (b) also see ref. 1b.
- 6.
- Martin, S.F., Tu, C., Chou, T. J. Am. Chem. Soc., 1980, 102, 5274. The use of thioimidates (8a) and amidines (8b) in intramolecular [4+2] 7. reactions have also been reported.
- (a) Tamaru, Y., Ishige, O., Kawamura, S., Yoshida, Z. <u>Tetrahedron Lett.</u>, 1984, 3583;
 (b) Widmer, U.; Heimgartner, H., Schmidt, H. <u>Helv. Chim. Acta</u>, 1978, 61, 815;
 (c) Prewo, R., Bieri, J.H., Widmer, U., Heimgartner, H.
 ibid., 1981, 64, 1515. 8.
- (a) Baccar, B.-G., Barrans, J.C. <u>Compt. Rend.</u> <u>1964</u>, 259, 1340; (b) Baccar, G.-G., Mathis, F. <u>ibid</u>., <u>1965</u>, 261, 174; (c) Bader, H. <u>J. Org. Chem.</u>, <u>1965</u>, 30, 707. 9.
- 10. (a) Pilotti, A., Reuterhall, A., Torssell, K., Lindblad, C.-G. <u>Acta Chem.</u> <u>SScand.</u> <u>1969</u>, 23, 818; (b) Weintraub, L.; Oles, S.R.; Kalish, N. <u>J. Org.</u>
- <u>Chem.</u> 1968, 33, 1679; (c) Borch, R.F. <u>Tetrahedron Lett.</u> 1968, 61. 11. Booth, H., Bailey, J.M. <u>J. Chem. Soc. Perkin Trans.</u> 2 1979, 510. 12. (a) Warshawsky, A., Ben-Ishai, D. <u>J. Heterocyclic Chem.</u> 1970, 7, 917; (b) Ben-Ishai, D., Inbal, Z., Warshwsky, A. <u>ibid.</u>, 1970, 7, 615; (c) Warshaw-sky, A., Ben-Ishai, D. <u>ibid.</u>, 1969, 6, 681.

(Received in USA 27 May 1986)